Il moto delle placche tettoniche produce il lento accumulo di grandi quantità di energia, attraverso deformazione di grandi volumi di roccia e l’accumulo di sforzo all’interno della crosta terrestre.
E’ noto che un terremoto è causato da un’improvvisa rottura della crosta terrestre, accompagnata dal movimento relativo di due blocchi di crosta attraverso una superficie di contatto comunemente indicata come “faglia”. La rottura produce il rilascio istantaneo dell’energia accumulata nel corso di decenni o di secoli.
Le faglie interagiscono tra loro. Lo spostamento di masse crostali associato alla rottura su una faglia perturba il volume circostante, per decine o a centinaia fino a migliaia di chilometri, a seconda della energia liberata dal terremoto. Queste variazioni alterano lo stato di sforzo sulle faglie limitrofe, diminuendo il carico e quindi allontanando il tempo del prossimo terremoto o, al contrario, caricandole ulteriormente e portandole più vicine alla rottura.
Negli ultimi decenni, in Italia si sono verificate sequenze sismiche con terremoti di magnitudo simile tra loro, avvenuti nella stessa area a distanza di pochi secondi (Irpinia, 1980), poche ore (Molise, 2002), pochi giorni (Umbria-Marche, 1997; Emilia Romagna, 2012) o pochi mesi (es: Italia centrale, 2016). Questi eventi fanno ipotizzare che la rapida successione di terremoti non sia casuale. Infatti, per alcuni di questi è stato dimostrato che gli eventi precedenti hanno favorito l’accadimento di quelli che sono seguiti, anticipandone quindi il tempo di accadimento (es.: Nostro et al., 2005; Nespoli et al., 2017).
In generale, il fatto che un terremoto possa avvenire prima è percepito come un evento nefasto. Tuttavia, relativamente al danno potenziale, questo non è necessariamente un accadimento totalmente negativo. Infatti, le variazioni di sforzo prodotte da eventi precedenti possono avvicinare nel tempo la rottura su una faglia adiacente, ma potrebbero modificarne le modalità di accadimento, anche limitandone l’energia emessa.
Nel corso della sequenza sismica dell’Italia centrale del 2016, nell’arco di un paio di mesi si sono verificati diversi terremoti di magnitudo rilevante, nel quadro della sismicità che interessa il territorio italiano (Figura 1). Al primo terremoto del 24 agosto 2016 di magnitudo MW 6.0, con epicentro localizzato nel comune di Accumoli (RI), hanno fatto seguito i due terremoti del 26 ottobre 2016, di magnitudo rispettivamente MW 5.4 e MW 5.9 e localizzati a Visso (MC), oltre 20 km a N-NO rispetto al primo evento. Infine, quattro giorni più tardi, il 30 ottobre, nell’area compresa tra gli eventi sismici del 24 agosto e del 26 ottobre è avvenuto il terremoto di Norcia (PG), il più forte della sequenza, con magnitudo MW 6.5.
Come nei casi citati, anche per la sequenza del 2016 è ipotizzabile un effetto “a cascata” dei terremoti precedenti sui successivi. Il calcolo delle variazioni causate dal terremoto del 24 agosto e da quelli del 26 ottobre sulla faglia che poi si romperà il 30 ottobre (Figura 2) mostra che i terremoti precedenti hanno modificato il campo di sforzo, diminuendo il carico sulla parte meridionale e su quella settentrionale della faglia, incrementando invece significativamente lo sforzo nella zona centrale, soprattutto nella porzione più profonda della faglia. Da qui la mattina del 30 ottobre partirà poi la rottura, rimanendo per lo più limitata all’area in cui lo sforzo era stato incrementato (Figura 3).
La struttura interessata dall’evento del 30 ottobre ha una superficie di circa 440 km2, due volte quella realmente attivata dal terremoto (Falcucci et al., 2018). Se questa si fosse rotta per intero in un unico terremoto l’energia emessa sarebbe stata almeno doppia, dando un terremoto di magnitudo almeno MW 6.7.
Che il terremoto avrebbe potuto essere più grande lo si può dedurre anche dal fatto che, pur avendo rilasciato energia sismica circa 7 volte maggiore – con uno spostamento relativo tra i due blocchi crostali mediamente doppio – rispetto al terremoto del 24 agosto, questi due eventi hanno rotto una superficie di dimensione simile. Questa evidenza suggerisce che, se gli eventi precedenti non avessero “bloccato” la porzione meridionale e quella settentrionale della faglia, il terremoto del 30 ottobre avrebbe avuto energia per rompere l’intera superficie di 440 km2.
Considerando che in quest’area i lenti movimenti tettonici accumulano sforzo con un tasso di 0.0028 bar/anno (Mildon et al., 2017), l’incremento di sforzo prodotto dai maggiori terremoti della sequenza sulla faglia del 30 ottobre (1.13 bar) corrispondono a un avanzamento nel tempo di circa 400 anni. Ma assumendo per questa faglia il tempo di accadimento dell’ultimo terremoto (500 A.D.) e il tempo di ricorrenza (1627 anni) utilizzato per i calcoli di pericolosità sismica (Akinci et al., 2009), in assenza di variazioni prodotte da altri eventi sismici, il prossimo terremoto su questa faglia sarebbe avvenuto tra circa 110 anni. Questo quindi è il tempo di cui è stato anticipato il terremoto avvenuto il 30 ottobre.
Si può quindi concludere che gli eventi precedenti hanno anticipato di oltre un secolo l’accadimento del terremoto del 30 ottobre, ma allo stesso tempo ne hanno limitato la magnitudo, verosimilmente dimezzando l’energia disponibile, che corrisponde a un decremento della magnitudo pari a 0.2.
Quest’analisi dimostra che il monitoraggio della sismicità con reti sismiche molto fitte e una conoscenza approfondita della geometria delle faglie rendono possibile questo tipo di analisi in tempo quasi reale e quindi si potrebbero identificare le aree verosimilmente interessate da prossimi terremoti. Purtroppo queste condizioni non sono sempre verificate. Un esempio per tutti, a oggi non è stata ancora individuata la faglia responsabile del terremoto dello Stretto di Messina del 1908, il più forte avvenuto in Italia da quando registriamo strumentalmente i terremoti e uno dei più disastrosi nella storia dell’intera umanità.
I risultati di questo studio sono stati appena pubblicati in un articolo sulla rivista Scientific Reports, scaricabile a questo link.
A cura di Nicola Alessandro Pino e Vincenzo Convertito, INGV-Osservatorio Vesuviano.
Riferimenti bibliografici
Akinci et al. Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy, Bull. Seismol. Soc. Am. 99, 585–610, 2009.
Cheloni, D. et al. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 44, 6778–6787, 2017.
Chiaraluce, L. et al. The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks and source models. Seismol. Res. Lett. 88, 757–771, 2017.
Falcucci et al. The Campotosto seismic gap in between the 2009 and 2016–2017 seismic sequences of central Italy and the role of inherited lithospheric faults in regional seismotectonic settings, Tectonics, 37, 2425–2445, 2018.
Mildon, Coulomb stress transfer and fault interaction over millennia on non-planar active normal faults: the MW 6.5–5.0 seismic sequence of 2016-2017, central Italy, Geophys. J. Int., 210, 1206–1218, 2017.
Nespoli et al. Effects of layered crust on the coseismic slip inversion and related CFF variations: Hints from the 2012 Emilia Romagna earthquake, Phys. Earth Planet. Int., 273, 23-35, 2017.
Nostro et al. Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria‐Marche (central Italy) seismic sequence, J. Geophys. Res., B05S20, 2005.
Pino et al. Clock advance and magnitude limitation through fault interaction: the case of the 2016 central Italy earthquake sequence, Scientific Reports, doi:10.1038/s41598-019-41453-1, 2019.
Fonte: ingvterremoti.wordpress.com